Papers
Topics
Authors
Recent
2000 character limit reached

Q-Networks for Binary Vector Actions (1512.01332v1)

Published 4 Dec 2015 in cs.NE and cs.LG

Abstract: In this paper reinforcement learning with binary vector actions was investigated. We suggest an effective architecture of the neural networks for approximating an action-value function with binary vector actions. The proposed architecture approximates the action-value function by a linear function with respect to the action vector, but is still non-linear with respect to the state input. We show that this approximation method enables the efficient calculation of greedy action selection and softmax action selection. Using this architecture, we suggest an online algorithm based on Q-learning. The empirical results in the grid world and the blocker task suggest that our approximation architecture would be effective for the RL problems with large discrete action sets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com