Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Q-Networks for Binary Vector Actions (1512.01332v1)

Published 4 Dec 2015 in cs.NE and cs.LG

Abstract: In this paper reinforcement learning with binary vector actions was investigated. We suggest an effective architecture of the neural networks for approximating an action-value function with binary vector actions. The proposed architecture approximates the action-value function by a linear function with respect to the action vector, but is still non-linear with respect to the state input. We show that this approximation method enables the efficient calculation of greedy action selection and softmax action selection. Using this architecture, we suggest an online algorithm based on Q-learning. The empirical results in the grid world and the blocker task suggest that our approximation architecture would be effective for the RL problems with large discrete action sets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com