Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Assessing forensic evidence by computing belief functions (1512.01250v2)

Published 2 Dec 2015 in math.PR and cs.AI

Abstract: We first discuss certain problems with the classical probabilistic approach for assessing forensic evidence, in particular its inability to distinguish between lack of belief and disbelief, and its inability to model complete ignorance within a given population. We then discuss Shafer belief functions, a generalization of probability distributions, which can deal with both these objections. We use a calculus of belief functions which does not use the much criticized Dempster rule of combination, but only the very natural Dempster-Shafer conditioning. We then apply this calculus to some classical forensic problems like the various island problems and the problem of parental identification. If we impose no prior knowledge apart from assuming that the culprit or parent belongs to a given population (something which is possible in our setting), then our answers differ from the classical ones when uniform or other priors are imposed. We can actually retrieve the classical answers by imposing the relevant priors, so our setup can and should be interpreted as a generalization of the classical methodology, allowing more flexibility. We show how our calculus can be used to develop an analogue of Bayes' rule, with belief functions instead of classical probabilities. We also discuss consequences of our theory for legal practice.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube