Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Integration: A Role in Statistical Computation? (1512.00933v6)

Published 3 Dec 2015 in stat.ML, cs.NA, math.NA, math.ST, stat.CO, and stat.TH

Abstract: A research frontier has emerged in scientific computation, wherein numerical error is regarded as a source of epistemic uncertainty that can be modelled. This raises several statistical challenges, including the design of statistical methods that enable the coherent propagation of probabilities through a (possibly deterministic) computational work-flow. This paper examines the case for probabilistic numerical methods in routine statistical computation. Our focus is on numerical integration, where a probabilistic integrator is equipped with a full distribution over its output that reflects the presence of an unknown numerical error. Our main technical contribution is to establish, for the first time, rates of posterior contraction for these methods. These show that probabilistic integrators can in principle enjoy the "best of both worlds", leveraging the sampling efficiency of Monte Carlo methods whilst providing a principled route to assess the impact of numerical error on scientific conclusions. Several substantial applications are provided for illustration and critical evaluation, including examples from statistical modelling, computer graphics and a computer model for an oil reservoir.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.