Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Online Budgeted Repeated Matching (1512.00153v1)

Published 1 Dec 2015 in cs.DS

Abstract: A basic combinatorial online resource allocation problem is considered, where multiple servers have individual capacity constraints, and at each time slot, a set of jobs arrives, that have potentially different weights to different servers. At each time slot, a one-to-one matching has to be found between jobs and servers, subject to individual capacity constraints, in an online manner. The objective is to maximize the aggregate weight of jobs allotted to servers, summed across time slots and servers, subject to individual capacity constraints. This problem generalizes the well known adwords problem, and is also relevant for various other modern applications. A simple greedy algorithm is shown to be 3-competitive, whenever the weight of any edge is at most half of the corresponding server capacity. Moreover, a randomized version of the greedy algorithm is shown to be 6-competitive for the unrestricted edge weights case. For parallel servers with small-weight jobs, we show that a load-balancing algorithm is near-optimal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.