Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Proximal gradient method for huberized support vector machine (1511.09159v1)

Published 30 Nov 2015 in stat.ML, cs.LG, cs.NA, and math.NA

Abstract: The Support Vector Machine (SVM) has been used in a wide variety of classification problems. The original SVM uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVMs, such as with $\ell_1$-regularization. This paper considers the Huberized SVM (HSVM), which uses a differentiable approximation of the hinge loss function. We first explore the use of the Proximal Gradient (PG) method to solving binary-class HSVM (B-HSVM) and then generalize it to multi-class HSVM (M-HSVM). Under strong convexity assumptions, we show that our algorithm converges linearly. In addition, we give a finite convergence result about the support of the solution, based on which we further accelerate the algorithm by a two-stage method. We present extensive numerical experiments on both synthetic and real datasets which demonstrate the superiority of our methods over some state-of-the-art methods for both binary- and multi-class SVMs.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.