Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evolving Models for Meso-Scale Structures (1511.08971v1)

Published 29 Nov 2015 in cs.SI and physics.soc-ph

Abstract: Real world complex networks are scale free and possess meso-scale properties like core-periphery and community structure. We study evolution of the core over time in real world networks. This paper proposes evolving models for both unweighted and weighted scale free networks having local and global core-periphery as well as community structure. Network evolves using topological growth, self growth, and weight distribution function. To validate the correctness of proposed models, we use K-shell and S-shell decomposition methods. Simulation results show that the generated unweighted networks follow power law degree distribution with droop head and heavy tail. Similarly, generated weighted networks follow degree, strength, and edge-weight power law distributions. We further study other properties of complex networks, such as clustering coefficient, nearest neighbor degree, and strength degree correlation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.