Emergent Mind

Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression

(1511.08963)
Published Nov 29, 2015 in math.ST , cs.LG , stat.ML , and stat.TH

Abstract

We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with $p\gg n$. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable ordering. These results apply to a variety of practical situations that allow for arbitrary nondegenerate covariance structures as well as many popular regularizers including the MCP, SCAD, $\ell{0}$ and $\ell{1}$. The proof relies on interpreting a DAG as a recursive linear structural equation model, which reduces the estimation problem to a series of neighbourhood regressions. We provide a novel statistical analysis of these neighbourhood problems, establishing uniform control over the superexponential family of neighbourhoods associated with a Gaussian distribution. We then apply these results to study the statistical properties of score-based DAG estimators, learning causal DAGs, and inferring conditional independence relations via graphical models. Our results yieldfor the first timefinite-sample guarantees for structure learning of Gaussian DAGs in high-dimensions via score-based estimation.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.