Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Stochastic Proximal Gradient Consensus Over Random Networks (1511.08905v2)

Published 28 Nov 2015 in math.OC, cs.IT, and math.IT

Abstract: We consider solving a convex, possibly stochastic optimization problem over a randomly time-varying multi-agent network. Each agent has access to some local objective function, and it only has unbiased estimates of the gradients of the smooth component. We develop a dynamic stochastic proximal-gradient consensus (DySPGC) algorithm, with the following key features: i) it works for both the static and certain randomly time-varying networks, ii) it allows the agents to utilize either the exact or stochastic gradient information, iii) it is convergent with provable rate. In particular, we show that the proposed algorithm converges to a global optimal solution, with a rate of $\mathcal{O}(1/r)$ [resp. $\mathcal{O}(1/\sqrt{r})$] when the exact (resp. stochastic) gradient is available, where r is the iteration counter. Interestingly, the developed algorithm bridges a number of (seemingly unrelated) distributed optimization algorithms, such as the EXTRA (Shi et al. 2014), the PG-EXTRA (Shi et al. 2015), the IC/IDC-ADMM (Chang et al. 2014), and the DLM (Ling et al. 2015) and the classical distributed subgradient method. Identifying such relationship allows for significant generalization of these methods. We also discuss one such generalization which accelerates the DySPGC (hence accelerating EXTRA, PG-EXTRA, IC-ADMM).

Citations (75)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube