Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Semantic Folding Theory And its Application in Semantic Fingerprinting (1511.08855v2)

Published 28 Nov 2015 in cs.AI, cs.CL, and q-bio.NC

Abstract: Human language is recognized as a very complex domain since decades. No computer system has been able to reach human levels of performance so far. The only known computational system capable of proper language processing is the human brain. While we gather more and more data about the brain, its fundamental computational processes still remain obscure. The lack of a sound computational brain theory also prevents the fundamental understanding of Natural Language Processing. As always when science lacks a theoretical foundation, statistical modeling is applied to accommodate as many sampled real-world data as possible. An unsolved fundamental issue is the actual representation of language (data) within the brain, denoted as the Representational Problem. Starting with Jeff Hawkins' Hierarchical Temporal Memory (HTM) theory, a consistent computational theory of the human cortex, we have developed a corresponding theory of language data representation: The Semantic Folding Theory. The process of encoding words, by using a topographic semantic space as distributional reference frame into a sparse binary representational vector is called Semantic Folding and is the central topic of this document. Semantic Folding describes a method of converting language from its symbolic representation (text) into an explicit, semantically grounded representation that can be generically processed by Hawkins' HTM networks. As it turned out, this change in representation, by itself, can solve many complex NLP problems by applying Boolean operators and a generic similarity function like the Euclidian Distance. Many practical problems of statistical NLP systems, like the high cost of computation, the fundamental incongruity of precision and recall , the complex tuning procedures etc., can be elegantly overcome by applying Semantic Folding.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.