Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Study of Memristor-based Oscillatory Neural Networks using PPV modeling (1511.08599v1)

Published 27 Nov 2015 in cs.ET

Abstract: Memristor-based oscillator is becoming promising thanks to its inherent NDR (Negative Differential Region) property and compact circuit structure. This paves the way to the large scale oscillatory neural network (ONN) and the realization of pattern recognition based on its global synchronization. However, the simulation of large scale ONN encounters the problem of long simulation time because of the large number of oscillators. Here we propose a highly efficient method to abstract the phase sensitivity characteristic of the memristor-based oscillator, i.e., its PPV (Perturbation Projection Vector), which allows reducing considerably the complexity of ONN simulation, and speeding up the simulation more than 2000 times. Our study also reveals the impact of the circuit parameters on the pattern recognition accuracy and the robustness against the frequency mismatch.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)