Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shaping Proto-Value Functions via Rewards (1511.08589v1)

Published 27 Nov 2015 in cs.AI and cs.LG

Abstract: In this paper, we combine task-dependent reward shaping and task-independent proto-value functions to obtain reward dependent proto-value functions (RPVFs). In constructing the RPVFs we are making use of the immediate rewards which are available during the sampling phase but are not used in the PVF construction. We show via experiments that learning with an RPVF based representation is better than learning with just reward shaping or PVFs. In particular, when the state space is symmetrical and the rewards are asymmetrical, the RPVF capture the asymmetry better than the PVFs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.