Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Elementary proof of convergence to the mean-field model for the SIR process (1511.08572v3)

Published 27 Nov 2015 in math.DS, cs.SI, math.PR, and q-bio.PE

Abstract: The susceptible-infected-recovered (SIR) model has been used extensively to model disease spread and other processes. Despite the widespread usage of this ordinary differential equation (ODE) based model which represents the mean-field approximation of the underlying stochastic SIR process on contact networks, only few rigorous approaches exist and these use complex semigroup and martingale techniques to prove that the expected fraction of the susceptible and infected nodes of the stochastic SIR process on a complete graph converges as the number of nodes increases to the solution of the mean-field ODE model. Extending the elementary proof of convergence for the SIS process introduced by Armbruster and Beck (2016) to the SIR process, we show convergence using only a system of three ODEs, simple probabilistic inequalities, and basic ODE theory. Our approach can also be generalized to many other types of compartmental models (e.g., susceptible-infected-recovered-susceptible (SIRS)) which are linear ODEs with the addition of quadratic terms for the number of new infections similar to the SI term in the SIR model.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.