Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Regularizing RNNs by Stabilizing Activations (1511.08400v7)

Published 26 Nov 2015 in cs.NE, cs.CL, cs.LG, and stat.ML

Abstract: We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the squared distance between successive hidden states' norms. This penalty term is an effective regularizer for RNNs including LSTMs and IRNNs, improving performance on character-level language modeling and phoneme recognition, and outperforming weight noise and dropout. We achieve competitive performance (18.6\% PER) on the TIMIT phoneme recognition task for RNNs evaluated without beam search or an RNN transducer. With this penalty term, IRNN can achieve similar performance to LSTM on language modeling, although adding the penalty term to the LSTM results in superior performance. Our penalty term also prevents the exponential growth of IRNN's activations outside of their training horizon, allowing them to generalize to much longer sequences.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: