Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The excluded minors for isometric realizability in the plane (1511.08054v5)

Published 25 Nov 2015 in math.MG, cs.DM, and math.CO

Abstract: Let $G$ be a graph and $p \in [1, \infty]$. The parameter $f_p(G)$ is the least integer $k$ such that for all $m$ and all vectors $(r_v){v \in V(G)} \subseteq \mathbb{R}m$, there exist vectors $(q_v){v \in V(G)} \subseteq \mathbb{R}k$ satisfying $$|r_v-r_w|p=|q_v-q_w|_p, \ \text{ for all }\ vw\in E(G).$$ It is easy to check that $f_p(G)$ is always finite and that it is minor monotone. By the graph minor theorem of Robertson and Seymour, there are a finite number of excluded minors for the property $f_p(G) \leq k$. In this paper, we determine the complete set of excluded minors for $f\infty(G) \leq 2$. The two excluded minors are the wheel on $5$ vertices and the graph obtained by gluing two copies of $K_4$ along an edge and then deleting that edge. We also show that the same two graphs are the complete set of excluded minors for $f_1(G) \leq 2$. In addition, we give a family of examples that show that $f_\infty$ is unbounded on the class of planar graphs and $f_\infty$ is not bounded as a function of tree-width.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.