Emergent Mind

Abstract

We study non-convex empirical risk minimization for learning halfspaces and neural networks. For loss functions that are $L$-Lipschitz continuous, we present algorithms to learn halfspaces and multi-layer neural networks that achieve arbitrarily small excess risk $\epsilon>0$. The time complexity is polynomial in the input dimension $d$ and the sample size $n$, but exponential in the quantity $(L/\epsilon2)\log(L/\epsilon)$. These algorithms run multiple rounds of random initialization followed by arbitrary optimization steps. We further show that if the data is separable by some neural network with constant margin $\gamma>0$, then there is a polynomial-time algorithm for learning a neural network that separates the training data with margin $\Omega(\gamma)$. As a consequence, the algorithm achieves arbitrary generalization error $\epsilon>0$ with ${\rm poly}(d,1/\epsilon)$ sample and time complexity. We establish the same learnability result when the labels are randomly flipped with probability $\eta<1/2$.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.