Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Private Posterior distributions from Variational approximations (1511.07896v1)

Published 24 Nov 2015 in stat.ML, cs.CR, and cs.LG

Abstract: Privacy preserving mechanisms such as differential privacy inject additional randomness in the form of noise in the data, beyond the sampling mechanism. Ignoring this additional noise can lead to inaccurate and invalid inferences. In this paper, we incorporate the privacy mechanism explicitly into the likelihood function by treating the original data as missing, with an end goal of estimating posterior distributions over model parameters. This leads to a principled way of performing valid statistical inference using private data, however, the corresponding likelihoods are intractable. In this paper, we derive fast and accurate variational approximations to tackle such intractable likelihoods that arise due to privacy. We focus on estimating posterior distributions of parameters of the naive Bayes log-linear model, where the sufficient statistics of this model are shared using a differentially private interface. Using a simulation study, we show that the posterior approximations outperform the naive method of ignoring the noise addition mechanism.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.