On the total $(k,r)$-domination number of random graphs (1511.07249v1)
Abstract: A subset $S$ of a vertex set of a graph $G$ is a total $(k,r)$-dominating set if every vertex $u \in V(G)$ is within distance $k$ of at least $r$ vertices in $S$. The minimum cardinality among all total $(k,r)$-dominating sets of $G$ is called the total $(k,r)$-domination number of $G$, denoted by $\gamma{t}_{(k,r)}(G)$. We previously gave an upper bound on $\gamma{t}_{(2,r)}(G(n,p))$ in random graphs with non-fixed $p \in (0,1)$. In this paper we generalize this result to give an upper bound on $\gamma{t}_{(k,r)}(G(n,p))$ in random graphs with non-fixed $p \in (0,1)$ for $k\geq 3$ as well as present an upper bound on $\gamma{t}_{(k,r)}(G)$ in graphs with large girth.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.