On the total $(k,r)$-domination number of random graphs (1511.07249v1)
Abstract: A subset $S$ of a vertex set of a graph $G$ is a total $(k,r)$-dominating set if every vertex $u \in V(G)$ is within distance $k$ of at least $r$ vertices in $S$. The minimum cardinality among all total $(k,r)$-dominating sets of $G$ is called the total $(k,r)$-domination number of $G$, denoted by $\gamma{t}_{(k,r)}(G)$. We previously gave an upper bound on $\gamma{t}_{(2,r)}(G(n,p))$ in random graphs with non-fixed $p \in (0,1)$. In this paper we generalize this result to give an upper bound on $\gamma{t}_{(k,r)}(G(n,p))$ in random graphs with non-fixed $p \in (0,1)$ for $k\geq 3$ as well as present an upper bound on $\gamma{t}_{(k,r)}(G)$ in graphs with large girth.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.