Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cascading Denoising Auto-Encoder as a Deep Directed Generative Model (1511.07118v2)

Published 23 Nov 2015 in cs.LG

Abstract: Recent work (Bengio et al., 2013) has shown howDenoising Auto-Encoders(DAE) become gener-ative models as a density estimator. However,in practice, the framework suffers from a mixingproblem in the MCMC sampling process and nodirect method to estimate the test log-likelihood.We consider a directed model with an stochas-tic identity mapping (simple corruption pro-cess) as an inference model and a DAE as agenerative model. By cascading these mod-els, we propose Cascading Denoising Auto-Encoders(CDAE) which can generate samples ofdata distribution from tractable prior distributionunder the assumption that probabilistic distribu-tion of corrupted data approaches tractable priordistribution as the level of corruption increases.This work tries to answer two questions. On theone hand, can deep directed models be success-fully trained without intractable posterior infer-ence and difficult optimization of very deep neu-ral networks in inference and generative mod-els? These are unavoidable when recent suc-cessful directed model like VAE (Kingma &Welling, 2014) is trained on complex dataset likereal images. On the other hand, can DAEs getclean samples of data distribution from heavilycorrupted samples which can be considered oftractable prior distribution far from data mani-fold? so-called global denoising scheme.Our results show positive responses of thesequestions and this work can provide fairly simpleframework for generative models of very com-plex dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.