Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Semi-supervised Bootstrapping approach for Named Entity Recognition (1511.06833v1)

Published 21 Nov 2015 in cs.CL and cs.IR

Abstract: The aim of Named Entity Recognition (NER) is to identify references of named entities in unstructured documents, and to classify them into pre-defined semantic categories. NER often aids from added background knowledge in the form of gazetteers. However using such a collection does not deal with name variants and cannot resolve ambiguities associated in identifying the entities in context and associating them with predefined categories. We present a semi-supervised NER approach that starts with identifying named entities with a small set of training data. Using the identified named entities, the word and the context features are used to define the pattern. This pattern of each named entity category is used as a seed pattern to identify the named entities in the test set. Pattern scoring and tuple value score enables the generation of the new patterns to identify the named entity categories. We have evaluated the proposed system for English language with the dataset of tagged (IEER) and untagged (CoNLL 2003) named entity corpus and for Tamil language with the documents from the FIRE corpus and yield an average f-measure of 75% for both the languages.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.