Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank (1511.06746v1)

Published 20 Nov 2015 in cs.CV and cs.LG

Abstract: Search is at the heart of modern e-commerce. As a result, the task of ranking search results automatically (learning to rank) is a multibillion dollar machine learning problem. Traditional models optimize over a few hand-constructed features based on the item's text. In this paper, we introduce a multimodal learning to rank model that combines these traditional features with visual semantic features transferred from a deep convolutional neural network. In a large scale experiment using data from the online marketplace Etsy, we verify that moving to a multimodal representation significantly improves ranking quality. We show how image features can capture fine-grained style information not available in a text-only representation. In addition, we show concrete examples of how image information can successfully disentangle pairs of highly different items that are ranked similarly by a text-only model.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.