Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Unitary-Group Invariant Kernels and Features from Transformed Unlabeled Data (1511.05943v1)

Published 18 Nov 2015 in cs.LG and cs.AI

Abstract: The study of representations invariant to common transformations of the data is important to learning. Most techniques have focused on local approximate invariance implemented within expensive optimization frameworks lacking explicit theoretical guarantees. In this paper, we study kernels that are invariant to the unitary group while having theoretical guarantees in addressing practical issues such as (1) unavailability of transformed versions of labelled data and (2) not observing all transformations. We present a theoretically motivated alternate approach to the invariant kernel SVM. Unlike previous approaches to the invariant SVM, the proposed formulation solves both issues mentioned. We also present a kernel extension of a recent technique to extract linear unitary-group invariant features addressing both issues and extend some guarantees regarding invariance and stability. We present experiments on the UCI ML datasets to illustrate and validate our methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.