Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining Neural Networks and Log-linear Models to Improve Relation Extraction (1511.05926v1)

Published 18 Nov 2015 in cs.CL and cs.LG

Abstract: The last decade has witnessed the success of the traditional feature-based method on exploiting the discrete structures such as words or lexical patterns to extract relations from text. Recently, convolutional and recurrent neural networks has provided very effective mechanisms to capture the hidden structures within sentences via continuous representations, thereby significantly advancing the performance of relation extraction. The advantage of convolutional neural networks is their capacity to generalize the consecutive k-grams in the sentences while recurrent neural networks are effective to encode long ranges of sentence context. This paper proposes to combine the traditional feature-based method, the convolutional and recurrent neural networks to simultaneously benefit from their advantages. Our systematic evaluation of different network architectures and combination methods demonstrates the effectiveness of this approach and results in the state-of-the-art performance on the ACE 2005 and SemEval dataset.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.