Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Articulated Motion Models from Visual and Lingual Signals (1511.05526v2)

Published 17 Nov 2015 in cs.RO, cs.CL, and cs.CV

Abstract: In order for robots to operate effectively in homes and workplaces, they must be able to manipulate the articulated objects common within environments built for and by humans. Previous work learns kinematic models that prescribe this manipulation from visual demonstrations. Lingual signals, such as natural language descriptions and instructions, offer a complementary means of conveying knowledge of such manipulation models and are suitable to a wide range of interactions (e.g., remote manipulation). In this paper, we present a multimodal learning framework that incorporates both visual and lingual information to estimate the structure and parameters that define kinematic models of articulated objects. The visual signal takes the form of an RGB-D image stream that opportunistically captures object motion in an unprepared scene. Accompanying natural language descriptions of the motion constitute the lingual signal. We present a probabilistic LLM that uses word embeddings to associate lingual verbs with their corresponding kinematic structures. By exploiting the complementary nature of the visual and lingual input, our method infers correct kinematic structures for various multiple-part objects on which the previous state-of-the-art, visual-only system fails. We evaluate our multimodal learning framework on a dataset comprised of a variety of household objects, and demonstrate a 36% improvement in model accuracy over the vision-only baseline.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.