Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k\rangle$ of oddly even length (1511.05413v1)

Published 17 Nov 2015 in cs.IT and math.IT

Abstract: Let $\mathbb{F}{2m}$ be a finite field of characteristic $2$ and $R=\mathbb{F}{2m}[u]/\langle uk\rangle=\mathbb{F}_{2m} +u\mathbb{F}{2m}+\ldots+u{k-1}\mathbb{F}{2m}$ ($uk=0$) where $k\in \mathbb{Z}{+}$ satisfies $k\geq 2$. For any odd positive integer $n$, it is known that cyclic codes over $R$ of length $2n$ are identified with ideals of the ring $R[x]/\langle x{2n}-1\rangle$. In this paper, an explicit representation for each cyclic code over $R$ of length $2n$ is provided and a formula to count the number of codewords in each code is given. Then a formula to calculate the number of cyclic codes over $R$ of length $2n$ is obtained. Moreover, the dual code of each cyclic code and self-dual cyclic codes over $R$ of length $2n$ are investigated. (AAECC-1522)

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.