Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning the Dimensionality of Word Embeddings (1511.05392v3)

Published 17 Nov 2015 in stat.ML, cs.CL, and cs.LG

Abstract: We describe a method for learning word embeddings with data-dependent dimensionality. Our Stochastic Dimensionality Skip-Gram (SD-SG) and Stochastic Dimensionality Continuous Bag-of-Words (SD-CBOW) are nonparametric analogs of Mikolov et al.'s (2013) well-known 'word2vec' models. Vector dimensionality is made dynamic by employing techniques used by Cote & Larochelle (2016) to define an RBM with an infinite number of hidden units. We show qualitatively and quantitatively that SD-SG and SD-CBOW are competitive with their fixed-dimension counterparts while providing a distribution over embedding dimensionalities, which offers a window into how semantics distribute across dimensions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.