Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Exploration of Softmax Alternatives Belonging to the Spherical Loss Family (1511.05042v3)

Published 16 Nov 2015 in cs.NE, cs.LG, and stat.ML

Abstract: In a multi-class classification problem, it is standard to model the output of a neural network as a categorical distribution conditioned on the inputs. The output must therefore be positive and sum to one, which is traditionally enforced by a softmax. This probabilistic mapping allows to use the maximum likelihood principle, which leads to the well-known log-softmax loss. However the choice of the softmax function seems somehow arbitrary as there are many other possible normalizing functions. It is thus unclear why the log-softmax loss would perform better than other loss alternatives. In particular Vincent et al. (2015) recently introduced a class of loss functions, called the spherical family, for which there exists an efficient algorithm to compute the updates of the output weights irrespective of the output size. In this paper, we explore several loss functions from this family as possible alternatives to the traditional log-softmax. In particular, we focus our investigation on spherical bounds of the log-softmax loss and on two spherical log-likelihood losses, namely the log-Spherical Softmax suggested by Vincent et al. (2015) and the log-Taylor Softmax that we introduce. Although these alternatives do not yield as good results as the log-softmax loss on two language modeling tasks, they surprisingly outperform it in our experiments on MNIST and CIFAR-10, suggesting that they might be relevant in a broad range of applications.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.