Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonparametric Canonical Correlation Analysis (1511.04839v4)

Published 16 Nov 2015 in cs.LG and stat.ML

Abstract: Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel or neural network structure), and are computationally demanding. Interestingly, the theory of nonlinear CCA, without functional restrictions, had been studied in the population setting by Lancaster already in the 1950s, but these results have not inspired practical algorithms. We revisit Lancaster's theory to devise a practical algorithm for nonparametric CCA (NCCA). Specifically, we show that the solution can be expressed in terms of the singular value decomposition of a certain operator associated with the joint density of the views. Thus, by estimating the population density from data, NCCA reduces to solving an eigenvalue system, superficially like kernel CCA but, importantly, without requiring the inversion of any kernel matrix. We also derive a partially linear CCA (PLCCA) variant in which one of the views undergoes a linear projection while the other is nonparametric. Using a kernel density estimate based on a small number of nearest neighbors, our NCCA and PLCCA algorithms are memory-efficient, often run much faster, and perform better than kernel CCA and comparable to deep CCA.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.