Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sensor Scheduling in Variance Based Event Triggered Estimation with Packet Drops (1511.04792v4)

Published 16 Nov 2015 in cs.SY

Abstract: This paper considers a remote state estimation problem with multiple sensors observing a dynamical process, where sensors transmit local state estimates over an independent and identically distributed (i.i.d.) packet dropping channel to a remote estimator. At every discrete time instant, the remote estimator decides whether each sensor should transmit or not, with each sensor transmission incurring a fixed energy cost. The channel is shared such that collisions will occur if more than one sensor transmits at a time. Performance is quantified via an optimization problem that minimizes a convex combination of the expected estimation error covariance at the remote estimator and expected energy usage across the sensors. For transmission schedules dependent only on the estimation error covariance at the remote estimator, this work establishes structural results on the optimal scheduling which show that 1) for unstable systems, if the error covariance is large then a sensor will always be scheduled to transmit, and 2) there is a threshold-type behaviour in switching from one sensor transmitting to another. Specializing to the single sensor case, these structural results demonstrate that a threshold policy (i.e. transmit if the error covariance exceeds a certain threshold and don't transmit otherwise) is optimal. We also consider the situation where sensors transmit measurements instead of state estimates, and establish structural results including the optimality of threshold policies for the single sensor, scalar case. These results provide a theoretical justification for the use of such threshold policies in variance based event triggered estimation. Numerical studies confirm the qualitative behaviour predicted by our structural results. An extension of the structural results to Markovian packet drops is also outlined.

Citations (114)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.