Papers
Topics
Authors
Recent
2000 character limit reached

An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors (1511.04695v1)

Published 15 Nov 2015 in cs.NA and cs.LG

Abstract: We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an Nth-order tensor in terms of N factor matrices and a core tensor via multilinear operations. To exploit the underlying multilinear low-rank structure in high-dimensional datasets, we propose a group-based log-sum penalty functional to place structural sparsity over the core tensor, which leads to a compact representation with smallest core tensor. The method for Tucker decomposition is developed by iteratively minimizing a surrogate function that majorizes the original objective function, which results in an iterative reweighted process. In addition, to reduce the computational complexity, an over-relaxed monotone fast iterative shrinkage-thresholding technique is adapted and embedded in the iterative reweighted process. The proposed method is able to determine the model complexity (i.e. multilinear rank) in an automatic way. Simulation results show that the proposed algorithm offers competitive performance compared with other existing algorithms.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.