Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference (1511.04514v1)

Published 14 Nov 2015 in stat.ML, cs.IT, cs.LG, math.IT, and math.OC

Abstract: We study parameter estimation and asymptotic inference for sparse nonlinear regression. More specifically, we assume the data are given by $y = f( x\top \beta* ) + \epsilon$, where $f$ is nonlinear. To recover $\beta*$, we propose an $\ell_1$-regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of $f$. In spite of the nonconvexity, we prove that under mild conditions, every stationary point of the objective enjoys an optimal statistical rate of convergence. In addition, we provide an efficient algorithm that provably converges to a stationary point. We also access the uncertainty of the obtained estimator. Specifically, based on any stationary point of the objective, we construct valid hypothesis tests and confidence intervals for the low dimensional components of the high-dimensional parameter $\beta*$. Detailed numerical results are provided to back up our theory.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.