Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Optimal Sample Complexity for Best Arm Identification (1511.03774v3)

Published 12 Nov 2015 in cs.LG and cs.DS

Abstract: We study the best arm identification (BEST-1-ARM) problem, which is defined as follows. We are given $n$ stochastic bandit arms. The $i$th arm has a reward distribution $D_i$ with an unknown mean $\mu_{i}$. Upon each play of the $i$th arm, we can get a reward, sampled i.i.d. from $D_i$. We would like to identify the arm with the largest mean with probability at least $1-\delta$, using as few samples as possible. We provide a nontrivial algorithm for BEST-1-ARM, which improves upon several prior upper bounds on the same problem. We also study an important special case where there are only two arms, which we call the sign problem. We provide a new lower bound of sign, simplifying and significantly extending a classical result by Farrell in 1964, with a completely new proof. Using the new lower bound for sign, we obtain the first lower bound for BEST-1-ARM that goes beyond the classic Mannor-Tsitsiklis lower bound, by an interesting reduction from Sign to BEST-1-ARM. We propose an interesting conjecture concerning the optimal sample complexity of BEST-1-ARM from the perspective of instance-wise optimality.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube