Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GEMMbench: a framework for reproducible and collaborative benchmarking of matrix multiplication (1511.03742v2)

Published 12 Nov 2015 in cs.MS and cs.PF

Abstract: The generic matrix-matrix multiplication (GEMM) is arguably the most popular computational kernel of the 20th century. Yet, surprisingly, no common methodology for evaluating GEMM performance has been established over the many decades of using GEMM for comparing architectures, compilers and ninja-class programmers. We introduce GEMMbench, a framework and methodology for evaluating performance of GEMM implementations. GEMMbench is implemented on top of Collective Knowledge (CK), a lightweight framework for reproducible and collaborative R&D in computer systems. Using CK allows the R&D community to crowdsource hand-written and compiler-generated GEMM implementations and to study their performance across multiple platforms, data sizes and data types. Our initial implementation supports hand-written OpenCL kernels operating on matrices consisting of single- and double-precision floating-point values, and producing single or multiple output elements per work-item (via thread coarsening and vectorization).

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)