Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Multimodal Semantic Embeddings for Speech and Images (1511.03690v1)

Published 11 Nov 2015 in cs.CV, cs.AI, and cs.CL

Abstract: In this paper, we present a model which takes as input a corpus of images with relevant spoken captions and finds a correspondence between the two modalities. We employ a pair of convolutional neural networks to model visual objects and speech signals at the word level, and tie the networks together with an embedding and alignment model which learns a joint semantic space over both modalities. We evaluate our model using image search and annotation tasks on the Flickr8k dataset, which we augmented by collecting a corpus of 40,000 spoken captions using Amazon Mechanical Turk.

Citations (151)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.