Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Size-Free CLT for Poisson Multinomials and its Applications (1511.03641v2)

Published 11 Nov 2015 in cs.DS, cs.GT, cs.LG, math.PR, math.ST, and stat.TH

Abstract: An $(n,k)$-Poisson Multinomial Distribution (PMD) is the distribution of the sum of $n$ independent random vectors supported on the set ${\cal B}_k={e_1,\ldots,e_k}$ of standard basis vectors in $\mathbb{R}k$. We show that any $(n,k)$-PMD is ${\rm poly}\left({k\over \sigma}\right)$-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on $n$ from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on $n$ and $1/\varepsilon$ of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of $(n,k)$-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from $O_k(1/\varepsilon2)$ samples in ${\rm poly}_k(1/\varepsilon)$-time, removing the quasi-polynomial dependence of the running time on $1/\varepsilon$ from the algorithm of Daskalakis, Kamath, and Tzamos.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.