Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eliminating Higher-Multiplicity Intersections, III. Codimension 2 (1511.03501v5)

Published 11 Nov 2015 in math.GT, cs.CG, and math.CO

Abstract: We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb Rd$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb Rd$ such that the images of any $r$ pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of the $(d+1)(r-1)$-simplex in $\mathbb Rd$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. \"Ozaydin, M. Gromov, P. Blagojevi\'c, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S3 \sqcup S3\sqcup S3\to \mathbb R5$ up to ornament concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.