Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

k-way Hypergraph Partitioning via n-Level Recursive Bisection (1511.03137v1)

Published 10 Nov 2015 in cs.DS

Abstract: We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time. Using several caching and lazy-evaluation techniques during coarsening and refinement, we reduce the running time by up to two-orders of magnitude compared to a naive $n$-level algorithm that would be adequate for ordinary graph partitioning. The overall performance is even better than the widely used hMetis hypergraph partitioner that uses a classical multilevel algorithm with few levels. Aided by a portfolio-based approach to initial partitioning and adaptive budgeting of imbalance within recursive bipartitioning, we achieve very high quality. We assembled a large benchmark set with 310 hypergraphs stemming from application areas such VLSI, SAT solving, social networks, and scientific computing. We achieve significantly smaller cuts than hMetis and PaToH, while being faster than hMetis. Considerably larger improvements are observed for some instance classes like social networks, for bipartitioning, and for partitions with an allowed imbalance of 10%. The algorithm presented in this work forms the basis of our hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning).

Citations (98)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.