Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models (1511.02930v2)

Published 9 Nov 2015 in stat.CO, cs.CR, cs.SI, and stat.AP

Abstract: Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under $\epsilon$-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.

Citations (52)

Summary

We haven't generated a summary for this paper yet.