Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models (1511.02930v2)
Abstract: Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under $\epsilon$-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.