2000 character limit reached
On $(α+uβ)$-constacyclic codes of length $p^sn$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ (1511.02743v2)
Published 9 Nov 2015 in cs.IT and math.IT
Abstract: Let $\mathbb{F}{pm}$ be a finite field of cardinality $pm$ and $R=\mathbb{F}{pm}[u]/\langle u2\rangle=\mathbb{F}{pm}+u\mathbb{F}{pm}$ $(u2=0)$, where $p$ is an odd prime and $m$ is a positive integer. For any $\alpha,\beta\in \mathbb{F}{pm}{\times}$, the aim of this paper is to represent all distinct $(\alpha+u\beta)$-constacyclic codes over $R$ of length $psn$ and their dual codes, where $s$ is a nonnegative integer and $n$ is a positive integer satisfying ${\rm gcd}(p,n)=1$. Especially, all distinct $(2+u)$-constacyclic codes of length $6\cdot 5t$ over $\mathbb{F}{3}+u\mathbb{F}_3$ and their dual codes are listed, where $t$ is a positive integer.