Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Linguistic Biomarkers for Predicting Mild Cognitive Impairment using Compound Skip-grams (1511.02436v2)

Published 8 Nov 2015 in cs.CL and cs.AI

Abstract: Predicting Mild Cognitive Impairment (MCI) is currently a challenge as existing diagnostic criteria rely on neuropsychological examinations. Automated Machine Learning (ML) models that are trained on verbal utterances of MCI patients can aid diagnosis. Using a combination of skip-gram features, our model learned several linguistic biomarkers to distinguish between 19 patients with MCI and 19 healthy control individuals from the DementiaBank language transcript clinical dataset. Results show that a model with compound of skip-grams has better AUC and could help ML prediction on small MCI data sample.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.