Papers
Topics
Authors
Recent
2000 character limit reached

Control Improvisation with Probabilistic Temporal Specifications (1511.02279v2)

Published 7 Nov 2015 in cs.SY

Abstract: We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learning and controller synthesis from formal specifications. We learn from existing data a generative model (for instance, an explicit-duration hidden Markov model, or EDHMM) and then supervise this model in order to guarantee that the generated sequences satisfy some desirable specifications given in Probabilistic Computation Tree Logic (PCTL). We present an implementation of our approach and apply it to the problem of mimicking the use of lighting appliances in a residential unit, with potential applications to home security and resource management. We present experimental results showing that our approach produces realistic control sequences, similar to recorded data based on human actuation, while satisfying suitable formal requirements.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.