Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations (1511.01699v2)

Published 5 Nov 2015 in cs.CC and cs.DS

Abstract: Low rank matrix approximation is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns and provides concise representations for the data. Research on low rank approximation usually focus on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrix. Here we are given a $d \times n$ binary matrix $A$ and a small integer $k$. The goal is to find two binary matrices $U$ and $V$ of sizes $d \times k$ and $k \times n$ respectively, so that the Frobenius norm of $A - U V$ is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The $\mathrm{GF}(2)$ model and the Boolean semiring model. Unlike low rank approximation of real matrix which can be efficiently solved by Singular Value Decomposition, approximation of binary matrix is $NP$-hard even for $k=1$. In this paper, we consider the problem of Column Subset Selection (CSS), in which one low rank matrix must be formed by $k$ columns of the data matrix. We characterize the approximation ratio of CSS for binary matrices. For $GF(2)$ model, we show the approximation ratio of CSS is bounded by $\frac{k}{2}+1+\frac{k}{2(2k-1)}$ and this bound is asymptotically tight. For Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of one low rank matrix are generated from Boolean formulas operating bitwise on columns of the data matrix. We show the approximation ratio of GCSS is bounded by $2{k-1}+1$, and the exponential dependency on $k$ is inherent.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chen Dan (19 papers)
  2. Kristoffer Arnsfelt Hansen (22 papers)
  3. He Jiang (58 papers)
  4. Liwei Wang (240 papers)
  5. Yuchen Zhou (41 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.