Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations (1511.01699v2)

Published 5 Nov 2015 in cs.CC and cs.DS

Abstract: Low rank matrix approximation is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns and provides concise representations for the data. Research on low rank approximation usually focus on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrix. Here we are given a $d \times n$ binary matrix $A$ and a small integer $k$. The goal is to find two binary matrices $U$ and $V$ of sizes $d \times k$ and $k \times n$ respectively, so that the Frobenius norm of $A - U V$ is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The $\mathrm{GF}(2)$ model and the Boolean semiring model. Unlike low rank approximation of real matrix which can be efficiently solved by Singular Value Decomposition, approximation of binary matrix is $NP$-hard even for $k=1$. In this paper, we consider the problem of Column Subset Selection (CSS), in which one low rank matrix must be formed by $k$ columns of the data matrix. We characterize the approximation ratio of CSS for binary matrices. For $GF(2)$ model, we show the approximation ratio of CSS is bounded by $\frac{k}{2}+1+\frac{k}{2(2k-1)}$ and this bound is asymptotically tight. For Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of one low rank matrix are generated from Boolean formulas operating bitwise on columns of the data matrix. We show the approximation ratio of GCSS is bounded by $2{k-1}+1$, and the exponential dependency on $k$ is inherent.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube