Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust data assimilation using $L_1$ and Huber norms (1511.01593v1)

Published 5 Nov 2015 in math.NA and cs.NA

Abstract: Data assimilation is the process to fuse information from priors, observations of nature, and numerical models, in order to obtain best estimates of the parameters or state of a physical system of interest. Presence of large errors in some observational data, e.g., data collected from a faulty instrument, negatively affect the quality of the overall assimilation results. This work develops a systematic framework for robust data assimilation. The new algorithms continue to produce good analyses in the presence of observation outliers. The approach is based on replacing the traditional $\L_2$ norm formulation of data assimilation problems with formulations based on $\L_1$ and Huber norms. Numerical experiments using the Lorenz-96 and the shallow water on the sphere models illustrate how the new algorithms outperform traditional data assimilation approaches in the presence of data outliers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube