Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Encoding !-tensors as !-graphs with neighbourhood orders (1511.01573v1)

Published 5 Nov 2015 in cs.LO

Abstract: Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about morphisms in a symmetric monoidal category. To allow working with infinite families of string diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially automated program for rewriting diagrams has proven very useful, but being based on !-graphs, only commutative theories are allowed. An enriched abstract tensor notation, called !-tensors, has been used to formalise the notion of !-boxes in non-commutative structures. This work-in-progress paper presents a method to encode !-tensors as !-graphs with some additional structure. This will allow us to leverage the existing code from Quantomatic and quickly provide various tools for non-commutative diagrammatic reasoning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.