Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Lasso based feature selection for malaria risk exposure prediction (1511.01284v1)

Published 4 Nov 2015 in stat.ML

Abstract: In life sciences, the experts generally use empirical knowledge to recode variables, choose interactions and perform selection by classical approach. The aim of this work is to perform automatic learning algorithm for variables selection which can lead to know if experts can be help in they decision or simply replaced by the machine and improve they knowledge and results. The Lasso method can detect the optimal subset of variables for estimation and prediction under some conditions. In this paper, we propose a novel approach which uses automatically all variables available and all interactions. By a double cross-validation combine with Lasso, we select a best subset of variables and with GLM through a simple cross-validation perform predictions. The algorithm assures the stability and the the consistency of estimators.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.