Burrows-Wheeler transform for terabases (1511.00898v2)
Abstract: In order to avoid the reference bias introduced by mapping reads to a reference genome, bioinformaticians are investigating reference-free methods for analyzing sequenced genomes. With large projects sequencing thousands of individuals, this raises the need for tools capable of handling terabases of sequence data. A key method is the Burrows-Wheeler transform (BWT), which is widely used for compressing and indexing reads. We propose a practical algorithm for building the BWT of a large read collection by merging the BWTs of subcollections. With our 2.4 Tbp datasets, the algorithm can merge 600 Gbp/day on a single system, using 30 gigabytes of memory overhead on top of the run-length encoded BWTs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.