Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Well-Supported versus Approximate Nash Equilibria: Query Complexity of Large Games (1511.00785v1)

Published 3 Nov 2015 in cs.GT and cs.CC

Abstract: We study the randomized query complexity of approximate Nash equilibria (ANE) in large games. We prove that, for some constant $\epsilon>0$, any randomized oracle algorithm that computes an $\epsilon$-ANE in a binary-action, $n$-player game must make $2{\Omega(n/\log n)}$ payoff queries. For the stronger solution concept of well-supported Nash equilibria (WSNE), Babichenko previously gave an exponential $2{\Omega(n)}$ lower bound for the randomized query complexity of $\epsilon$-WSNE, for some constant $\epsilon>0$; the same lower bound was shown to hold for $\epsilon$-ANE, but only when $\epsilon=O(1/n)$. Our result answers an open problem posed by Hart and Nisan and Babichenko and is very close to the trivial upper bound of $2n$. Our proof relies on a generic reduction from the problem of finding an $\epsilon$-WSNE to the problem of finding an $\epsilon/(4\alpha)$-ANE, in large games with $\alpha$ actions, which might be of independent interest.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)