Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A note on coloring (even-hole,cap)-free graphs (1510.09192v1)

Published 30 Oct 2015 in cs.DM and math.CO

Abstract: A {\em hole} is a chordless cycle of length at least four. A hole is {\em even} (resp. {\em odd}) if it contains an even (resp. odd) number of vertices. A \emph{cap} is a graph induced by a hole with an additional vertex that is adjacent to exactly two adjacent vertices on the hole. In this note, we use a decomposition theorem by Conforti et al. (1999) to show that if a graph $G$ does not contain any even hole or cap as an induced subgraph, then $\chi(G)\le \lfloor\frac{3}{2}\omega(G)\rfloor$, where $\chi(G)$ and $\omega(G)$ are the chromatic number and the clique number of $G$, respectively. This bound is attained by odd holes and the Hajos graph. The proof leads to a polynomial-time $3/2$-approximation algorithm for coloring (even-hole,cap)-free graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.