A note on coloring (even-hole,cap)-free graphs (1510.09192v1)
Abstract: A {\em hole} is a chordless cycle of length at least four. A hole is {\em even} (resp. {\em odd}) if it contains an even (resp. odd) number of vertices. A \emph{cap} is a graph induced by a hole with an additional vertex that is adjacent to exactly two adjacent vertices on the hole. In this note, we use a decomposition theorem by Conforti et al. (1999) to show that if a graph $G$ does not contain any even hole or cap as an induced subgraph, then $\chi(G)\le \lfloor\frac{3}{2}\omega(G)\rfloor$, where $\chi(G)$ and $\omega(G)$ are the chromatic number and the clique number of $G$, respectively. This bound is attained by odd holes and the Hajos graph. The proof leads to a polynomial-time $3/2$-approximation algorithm for coloring (even-hole,cap)-free graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.