Papers
Topics
Authors
Recent
2000 character limit reached

A Unified Theory of Confidence Regions and Testing for High Dimensional Estimating Equations (1510.08986v2)

Published 30 Oct 2015 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We propose a new inferential framework for constructing confidence regions and testing hypotheses in statistical models specified by a system of high dimensional estimating equations. We construct an influence function by projecting the fitted estimating equations to a sparse direction obtained by solving a large-scale linear program. Our main theoretical contribution is to establish a unified Z-estimation theory of confidence regions for high dimensional problems. Different from existing methods, all of which require the specification of the likelihood or pseudo-likelihood, our framework is likelihood-free. As a result, our approach provides valid inference for a broad class of high dimensional constrained estimating equation problems, which are not covered by existing methods. Such examples include, noisy compressed sensing, instrumental variable regression, undirected graphical models, discriminant analysis and vector autoregressive models. We present detailed theoretical results for all these examples. Finally, we conduct thorough numerical simulations, and a real dataset analysis to back up the developed theoretical results.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.