Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Robust Subspace Clustering via Tighter Rank Approximation (1510.08971v1)

Published 30 Oct 2015 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: Matrix rank minimization problem is in general NP-hard. The nuclear norm is used to substitute the rank function in many recent studies. Nevertheless, the nuclear norm approximation adds all singular values together and the approximation error may depend heavily on the magnitudes of singular values. This might restrict its capability in dealing with many practical problems. In this paper, an arctangent function is used as a tighter approximation to the rank function. We use it on the challenging subspace clustering problem. For this nonconvex minimization problem, we develop an effective optimization procedure based on a type of augmented Lagrange multipliers (ALM) method. Extensive experiments on face clustering and motion segmentation show that the proposed method is effective for rank approximation.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube