Papers
Topics
Authors
Recent
2000 character limit reached

Robust Subspace Clustering via Tighter Rank Approximation (1510.08971v1)

Published 30 Oct 2015 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: Matrix rank minimization problem is in general NP-hard. The nuclear norm is used to substitute the rank function in many recent studies. Nevertheless, the nuclear norm approximation adds all singular values together and the approximation error may depend heavily on the magnitudes of singular values. This might restrict its capability in dealing with many practical problems. In this paper, an arctangent function is used as a tighter approximation to the rank function. We use it on the challenging subspace clustering problem. For this nonconvex minimization problem, we develop an effective optimization procedure based on a type of augmented Lagrange multipliers (ALM) method. Extensive experiments on face clustering and motion segmentation show that the proposed method is effective for rank approximation.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.