Papers
Topics
Authors
Recent
2000 character limit reached

The "Most informative boolean function" conjecture holds for high noise (1510.08656v1)

Published 29 Oct 2015 in cs.IT, math.CO, math.IT, and math.PR

Abstract: We prove the "Most informative boolean function" conjecture of Courtade and Kumar for high noise $\epsilon \ge 1/2 - \delta$, for some absolute constant $\delta > 0$. Namely, if $X$ is uniformly distributed in ${0,1}n$ and $Y$ is obtained by flipping each coordinate of $X$ independently with probability $\epsilon$, then, provided $\epsilon \ge 1/2 - \delta$, for any boolean function $f$ holds $I(f(X);Y) \le 1 - H(\epsilon)$. This conjecture was previously known to hold only for balanced functions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.